26) Hydroxide ion participation was ignored on the basis of its low concentration under the reaction conditions.
(27) Kice, J. L.; Rogers, T. E.; Warheit, A. C. J. Am. Chem. Soc. 1974, 96, 8020.
(28) Hibbert, F.; Awwal, A. J. Chem. Soc., Perkin Trans. 2 1978, 939.
(29) No isotope effect on the k_{1} step is expected.
(30) Bell, R. P.; Crooks, J. E. J. Chem. Soc. 1962, 3513.
(31) The k_{1} values of Table III for reactions of secondary amines with 1,4 , and 6 and the k_{2} values of Table I for reactions of primary amines with 1-6 are assumed to be associated with the same nucleophilic attack step $\left(k_{1}\right)$ of Scheme I or II.
(32) We believe that this loss of absorbance at 300 nm in more concentrated (0.02-0.08 M) mercaptoethanol solution is due to Michael reaction of RSH with $\mathrm{RSCH}=\mathrm{CHCOCH}_{3}$ to give $(\mathrm{RS})_{2} \mathrm{CHCH}_{2} \mathrm{COCH}_{3}$.

Acid- and Base-Catalyzed Dehydration of Prostaglandin E_{2} to Prostaglandin A_{2} and General-Base-Catalyzed Isomerization of Prostaglandin A_{2} to Prostaglandin B_{2}

S. K. Perera and L. R. Fedor*
Contribution from the Department of Medicinal Chemistry, School of Pharmacy, State University of New York at Buffalo, Buffalo, New York 14260. Received June 29, 1979

Abstract

Dehydration of prostaglandin $E_{2}\left(\mathrm{PGE}_{2}\right)$ to prostaglandin $\mathrm{A}_{2}\left(\mathrm{PGA}_{2}\right)$ in aqueous solution is catalyzed by hydrogen ion ($k_{\mathrm{H}}^{\mathrm{d}}$), hydroxide ion ($k_{\mathrm{OH}}^{\mathrm{d}}$), and quinuclidine $\left(k_{\mathrm{A}}^{\mathrm{d}}\right.$). The values of $k_{\mathrm{H}}^{\mathrm{d}}$ and $k_{\mathrm{OH}}^{\mathrm{d}}$ are very similar to those for various known enolization reactions and $k^{d_{H}}\left(\mathrm{H}_{2} \mathrm{O}\right) / k_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right)=0.6$, results that support a mechanism involving rate-determining enolization of PGE_{2} during dehydration. Isomerization of PGA_{2} to prostaglandiri $\mathrm{B}_{2}\left(\mathrm{PGB}_{2}\right)$ is general base catalyzed by tertiary amines with $k^{\mathrm{i}} \mathrm{A}^{\left(\mathrm{H}_{2} \mathrm{O}\right)} / k_{\mathrm{A}}^{\mathrm{i}}\left(\mathrm{D}_{2} \mathrm{O}\right)=1.1$. The rate constants $k_{\mathrm{A}}^{\mathrm{i}}$ and $k_{\mathrm{OH}}^{\mathrm{i}}$ for loss of PGA_{2} are equal to those for formation of $\mathrm{PGB} \mathrm{B}_{2}$ and it is suggested that $\mathrm{C}-12$ proton abstraction is rate determining in the reaction sequence $\mathrm{PGA}_{2} \rightarrow \mathrm{PGC}_{2} \rightarrow$ PGB2.

The clinical usefulness of prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ in

human reproduction ${ }^{1-5}$ coupled with its chemical instability in aqueous solution ${ }^{6-13}$ has prompted a research activity directed toward preparation of PGE_{2} prodrugs and pharmaceutical formulations ${ }^{14-17}$ that retain biological activity and possess greater stability. The chemical instability of E and A series prostaglandins was shown ${ }^{6-13}$ to involve dehydration of the 9,11-ketol to PGAs in acidic and alkaline solution (eq 1), isomerization of PGAs to PGCs in alkaline solution (eq 1), isomerization of PGCs to PGBs in alkaline solution (eq 1),

epimerization of PGE_{1} to 8 -iso- PGE_{1} in ethanolic potassium acetate, epimerization of prostaglandins to 15 -epiprostaglandins in dilute acid, and allylic rearrangement of 15 -epiPGA_{2} to the 13-hydroxy diastereomers of PGA_{2}. Biochemical transformations of prostaglandins catalyzed by enzymes include dehydration of PGE_{2} to $\mathrm{PGA}_{2}, 18-20$ isomerization of PGAs to PGCs, ${ }^{21-23}$ isomerization of PGCs to $\mathrm{PGBs},{ }^{20}$ reduction of the 9 -keto group to the carbinol, ${ }^{24,25}$ oxidation of the C-15 carbinol to the ketone, ${ }^{26,27}$ and reduction of the Δ^{13} double bond. ${ }^{28,29}$ Little is known of the chemistry of the dehydratase and isomerase enzymes except that they are inhibited by sulfhydryl reagents and they likely do not require cofactors. ${ }^{18-21.23}$

This study was undertaken to probe the nature of the acid-
base-catalyzed dehydration-isomerization sequence $\mathrm{PGE}_{2} \rightarrow$ $\mathrm{PGA}_{2} \rightarrow \mathrm{PGC}_{2} \rightarrow \mathrm{PGB}_{2}$ depicted in eq 1 with a view to contributing to a better understanding of the mechanisms of these transformations. Owing to the variety of prostaglandin chemistry that takes place simultaneously in aqueous solution at any pH , the rate constants reported in this kinetics study do not strictly represent the chemistry of eq $1: 8$ - and 15 -epi- PGE_{2} and PGA_{2} should be formed during dehydration. However, these epimers are expected to have similar reactivities to PGE_{2} and PGA_{2} with respect to ring dehydration-isomerization and we suggest that our conclusions of mechanism are little affected by these extraneous events.

Experimental Section

Apparatus. Gilford Model 2400, Beckman Model DBG, and Cary Model 118 spectrophotometers were used. Temperature was maintained with a Tamson T9 circulating water bath connected to thermospacers in the Gilford spectrophotometer. pH measurements were made with a Radiometer PHM 26 meter with GK2321 B or GK2321C electrodes.

Reagents. PGE_{2} was a gift from Upjohn Co. All reagents were Fisher certified ACS grade except quinuclidine, quinuclidinol (Aldrich), triethylamine (Eastman), $\mathrm{D}_{2} \mathrm{O}, \mathrm{DCl}(99.9 \% \mathrm{D})$ (Stohler Isotope Chemicals), $\mathrm{K}_{2} \mathrm{HPO}_{4}$, and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (Sigma). Line distilled water was redistilled through a Corning AGla still before use.

Kinetics. All solutions had a calculated ionic strength of 0.5 M (KCl) unless otherwise stated. The temperature of reactions was 30 $\pm 0.1^{\circ} \mathrm{C}$. The pH of reactant solutions were measured and found to be constant $(\pm 0.04 \mathrm{pH})$ for all serial dilutions except $\mathrm{HCl} / \mathrm{KCl}$ and $\mathrm{KOH} / \mathrm{KCl}$. Reactions were run under pseudo-first-order conditions and were initiated by addition of PGE_{2} in absolute ethanol to aqueous solutions of reactants. The concentration of ethanol was ca. 1% and that of PGE 2 ca. $10^{-4}-10^{-5} \mathrm{M}$ in the $\Phi 3-\mathrm{mL}$ cuvettes. $\mathrm{p} K_{\mathrm{a}}$ values were determined by the method of fractional neutralization. PD was determined from the pH meter reading by adding 0.4 to it. ${ }^{30} \mathrm{Hy}$ droxide ion activity was determined from $K_{\mathrm{w}} / a_{\mathrm{H}}$ where $\mathrm{p} K_{\mathrm{w}}=13.83$ at $30^{\circ} \mathrm{C}^{31}$ and deuterioxide ion activity was determined from $K_{\mathrm{D}} / a_{\mathrm{D}}$ where $\mathrm{p} K_{\mathrm{D}}=14.65$ at $30^{\circ} \mathrm{C} .{ }^{32}$

Reaction of PGE_{2} with hydroxide solution is characterized by an initial increase in optical density (OD) followed by a slower decrease at 224 nm . This decrease is accompanied by an increase in OD at 280

Table I. Rate Data for Dehydration of PGE_{2} to PGA_{2} in Aqueous Solution ${ }^{a}$

catalyst	$\begin{aligned} & k_{2}^{\mathrm{d}}, \mathrm{M}^{-1} \\ & \min ^{-1} c \end{aligned}$	fraction of base	conen range of catalyst, M	no. of k_{obsd}
$\mathrm{Q}^{\text {b }}$	1.48 ± 0.07	0.4	0.002-0.02	16
Q	1.60 ± 0.03	0.5	0.001-0.02	15
Q	2.23 ± 0.03	0.6	0.002-0.02	8
OH^{-}	16.0 ± 0.7		0.01-0.1	23
HCl^{d}	0.00431 ± 0.00002		0.05-1.0	13
$\mathrm{DCl}^{\text {d }}$	0.00697 ± 0.00054		0.5-1.0	

${ }^{a} t=30 \pm 0.1{ }^{\circ} \mathrm{C}, \mu=0.5(\mathrm{KCl})$, reactions monitored at 224 nm . ${ }^{h}$ All Q 's are quinuclidine in 0.01 M phosphate buffer, $\mathrm{p} K_{\mathrm{a}}(\mathrm{Q})=$ 11.25. ${ }^{\circ} k^{\mathrm{d}}{ }_{2}$ is a general expression for the second-order rate constant for dehydration of PGE_{2} catalyzed by $\mathrm{Q}\left(k^{\mathrm{d}} \mathrm{A}\right), \mathrm{OH}^{-}\left(k^{\mathrm{d}} \mathrm{OH}\right)$, and $\mathrm{HCl}, \mathrm{DCl}\left(k^{\mathrm{d}}{ }_{\mathrm{H}}, k^{\mathrm{d}} \mathrm{D}\right) .{ }^{d} \mu=1.0(\mathrm{KCl})$.
nm . The OD increase at 224 nm is due to formation of the conjugated ketone system in PGA_{2} by dehydration of $\mathrm{PGE}_{2}{ }^{33}$ The subsequent decrease in OD at 224 nm is due to loss of PGA_{2} by isomerization and the corresponding increase in OD at 280 nm is due to the formation of another conjugated ketone, PGB_{2} (eq 1). ${ }^{33}$ Kinetically these reactions are

$$
\mathrm{A}^{k_{1}} \mathrm{~B} \xrightarrow{k_{2}} \mathrm{C}
$$

reactions, ${ }^{34}$ and k_{1} and k_{2} are pseudo-first-order rate constants. The concentration of $\mathrm{B}\left(\mathrm{PGA}_{2}\right)$ at any time is given by $[\mathrm{B}]=A_{0} k_{1} /\left(k_{2}\right.$ $\left.-k_{1}\right)\left\{\left(e^{-k_{1} t}-e^{-k_{2 t} t}\right\}\right.$ where A_{0} is the concentration of PGE_{2} at zero time. For large values of t, k_{2} was determined from the slopes of plots of $\ln \left(\mathrm{OD}_{t}-\mathrm{OD}_{\infty}\right)$ vs. t. The constant k_{1} was determined from slopes of plots of $\ln \left\{e^{-k_{2} t}-\left[\left(\mathrm{OD}_{1}-\mathrm{OD}_{\infty}\right) / C\right]\right\}$ vs. t. C is a constant and is the y intercept of those plots used to determine k_{2}. Plots were linear to 75% reaction or beyond.

Reactions of PGE_{2} with hydroxide ion, triethylamine, quinuclidine, and quinuclidinol solutions were studied at 280 nm and were characterized by an initial lag period followed by a usual rectangular hyperbolic OD increase vs. t due to the formation of PG B_{2}. No Michael addition of hydroxide ions to PGB_{2} was detected as evidenced by stable $O D_{\infty}$ values for these reactions under the conditions of the study. Pseudo-first-order rate constants were obtained from slopes of plots of $\ln \left\{\left(O D_{\infty}-O D_{0}\right) /\left(O D_{\infty}-O D_{i}\right)\right\}$ vs. t. Plots were linear to 75% reaction or beyond when arbitrary $t=0$ was taken beyond the initial lag period.

Reactions of PGE_{2} with quinuclidine solutions, monitored at 224 nm , are experimentally complicated by the virtually instantaneous reaction of the product PGA_{2} with the amine as well as by the poor transparency of amine solutions at this wavelength. The reaction results in decreased absorption at 224 nm and this decrease is a function of amine concentration. We ascribe this to addition of quinuclidine and a proton across the 10,11 -olefin bond of $\mathrm{PGA}_{2} .{ }^{15}$ However, dehydration of PGE_{2} and isomerization of PGA_{2} catalyzed by dilute quinuclidine solutions in 0.01 M phosphate buffer to maintain constant pH were studied at 224 nm . No catalysis by the phosphate buffer was detected, although no systematic study of phosphate buffer catalysis was made. Pseudo-first-order rate constants were calculated for an $A \rightarrow B \rightarrow C$ sequence as described above.

Optical density increase at 224 nm vs. time was recorded to follow the dehydration of PGE_{2} to PGA_{2} in aqueous HCl . Pseudo-first-order rate constants were obtained from the slopes of plots of $\ln \left\{\left(\mathrm{OD}_{\infty}-\right.\right.$ $\left.\left.\mathrm{OD}_{0}\right) /\left(\mathrm{OD}_{\infty}-\mathrm{OD}_{1}\right)\right\}$ vs. t and they were linear to 75% reaction or beyond. The OD_{∞} value decreased with time for reactions run in HCl solutions more concentrated than 3 M . The equilibrium constant $K_{\text {e }}$ $=\left[\mathrm{PGA}_{2}\right] /\left[\mathrm{PGE}_{2}\right]=161$ was calculated from $\epsilon_{224} 595 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ (five measurements) for $\mathrm{PGE}_{2}, \epsilon_{224} 10715 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ for $\mathrm{PGA}_{2},{ }^{35}$ the concentration of added $\mathrm{PGE}_{2}\left(=\mathrm{PGE}_{2}+\mathrm{PGA}_{2}\right)$, and OD at equilibrium.

Results

Dehydration of PGE_{2}. Dehydration of PGE_{2} to PGA_{2} in dilute potassium hydroxide solution obeys the rate law

$$
\begin{equation*}
\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGE}_{2}\right]=k_{\mathrm{obsd}}=k^{\mathrm{d}} \mathrm{OH} a_{\mathrm{OH}} \tag{2}
\end{equation*}
$$

where a_{OH} is the activity of hydroxide ion determined from the

Table II. Rate Data for 1somerization of PGA_{2} to PGB_{2} in Aqueous Solution ${ }^{a}$

catalyst ${ }^{\text {b }}$	$\begin{aligned} & k^{\mathrm{i}}{ }_{2}, \mathrm{M}^{-1} \\ & \min ^{-1} \end{aligned}$	fraction of base	concn range of catalyst, M	no. of $k_{\text {obsd }}$
Q ${ }^{\text {c }}$	1.13 ± 0.26	0.4	0.002-0.02	20
$Q^{\text {c }}$	0.92 ± 0.06	0.5	0.001-0.02	16
Q ${ }^{\text {c }}$	0.73 ± 0.07	0.6	0.002-0.02	9
Q	1.43 ± 0.08	0.5	0.02-0.2	9
Q	1.09 ± 0.07	0.6	0.02-0.2	9
Qol	0.00548 ± 0.00004	0.5	0.04-0.2	6
TEA	0.0235 ± 0.0012	0.4	0.05-0.5	10
TEA	0.0324 ± 0.0016	0.5	0.05-0.5	10
TEA	0.0327 ± 0.0017	0.6	0.05-0.5	10
TEA ($\left.\mathrm{D}_{2} \mathrm{O}\right)^{f}$	0.0266 ± 0.00044	0.5	0.1-0.5	6
OH^{-d}	1.59 ± 0.05		0.01-0.1	20
OH^{-}	1.69 ± 0.19		0.01-0.1	20

${ }^{a} t=30 \pm 0.1^{\circ} \mathrm{C} ; \mu=0.5(\mathrm{KCl})$; reactions monitored at 280 nm unless otherwise stated. ${ }^{b}$ Quinuclidine (Q), $\mathrm{p} K_{\mathrm{a}}=11.25$; quinuclidinol (Qol), $\mathrm{p} K_{\mathrm{a}} 9.95$; triethylamine (TEA), $\mathrm{p} K_{\mathrm{a}}=10.84$. ${ }^{\text {c }}$ Quinuclidine in 0.01 M phosphate buffer; reactions monitored at 224 nm . ${ }^{d}$ Reactions monitored at $224 \mathrm{~nm} .{ }^{e} k^{i}$ is a general expression for the second-order rate constant for isomerization of PGA_{2} catalyzed by amines $\left(k_{\mathrm{A}}^{\mathrm{i}}\right)$ and hydroxide ion $\left(k^{\mathrm{i}} \mathrm{OH}\right) . f \mathrm{p} K_{\mathrm{a}}\left(\mathrm{D}_{2} \mathrm{O}\right)=11.47$.
pH of reactant solutions and $\mathrm{p} K_{\mathrm{w}}$. The constant $k^{\mathrm{d}} \mathrm{OH}$ (Table I) was evaluated by dividing $k_{\text {obsd }}$ by a_{OH} for unbuffered runs at $\mathrm{pH}>11$. The equilibrium dehydration of PGE_{2} to PGA_{2} in dilute acid solution obeys the rate law

$$
\begin{equation*}
\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGE}_{2}\right]=k_{\mathrm{obsd}}=k_{\mathrm{H}}^{\mathrm{d}} a_{\mathrm{H}} \tag{3}
\end{equation*}
$$

where a_{H} is the activity of the hydrogen ion. The constant $k^{d}{ }_{H}$ (Table I) was obtained by dividing $k_{\text {obsd }}$ by a_{H} for runs in dilute $\mathrm{HCl} / \mathrm{KCl}$ solutions. From $K_{\mathrm{e}}=161$, the rate constant for dehydration is $4.28 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and that for hydration is $2.66 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~min}^{-1}$. The deuterium solvent kinetic isotope effect (KIE), $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$, is 0.62 (Table I).

Dehydration of PGE_{2} to PGA_{2} catalyzed by dilute quinuclidine (Q) solutions buffered with 0.01 M phosphate follows the rate law ${ }^{57}$

$$
\begin{equation*}
\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGE}_{2}\right]=k_{\mathrm{obsd}}=k^{\mathrm{d}} \hat{A}_{\mathrm{B}}\left[\mathrm{Q}_{\mathrm{t}}\right]+k_{\mathrm{OH}}^{\mathrm{d}} a_{\mathrm{OH}} \tag{4}
\end{equation*}
$$

The constant k^{d} (Table I) was obtained by dividing the slopes of plots of $k_{\text {obsd }}$ vs. $\left[\mathrm{Q}_{\mathrm{t}}\right]$, where $\left[\mathrm{Q}_{\mathrm{t}}\right]=[\mathrm{Q}]+[\mathrm{QH}]$, by f_{B}, the fraction of base form of Q present in the $Q / Q H$ buffer solution.

Isomerization of $\mathbf{P G A}_{\mathbf{2}}$. In dilute potassium hydroxide solution, isomerization of PGA_{2} followed at 224 and 280 nm obeys the rate law

$$
\left.\left.\begin{array}{rl}
-\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGA}_{2}\right]=\mathrm{d}[& {\left[\mathrm{PGB}_{2}\right] / \mathrm{d} t}
\end{array}\right] \mathrm{PGA}_{2}\right] .
$$

The rate constant $k^{\mathrm{i}} \mathrm{OH}^{(T a b l e ~ I I)}$ was evaluated for each wavelength as the slope of a plot of $k_{\text {obsd }}$ vs. a_{OH} and the two constants are identical within the limits of experimental error. The intercept k_{0} has the value $0.001 \pm 0.0019 \mathrm{~min}^{-1}$. We believe that k_{0} is real, although its value is uncertain, because plots of $k_{\text {obsd }}$ vs. concentration of amine for isomerization reactions run in aqueous amine solutions (vide infra) consistently gave intercepts at a variety of pHs that were larger than those computed from $k^{\mathrm{i}} \mathrm{OH}^{2} a_{\mathrm{OH}}$ by ca. $1.5 \times 10^{-3} \mathrm{~min}^{-1} .58$

Isomerization of PGA_{2} to PGB_{2} in very dilute quinuclidine (Q) solutions buffered with 0.01 M phosphate and monitored at 224 nm obeys the rate law

$$
\begin{align*}
-\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGA}_{2}\right]= & k_{\text {obsd }} \\
& =k^{\mathrm{i}} \hat{\mathrm{f}}_{\mathrm{B}}\left[\mathrm{Q}_{\mathrm{t}}\right]+k_{\mathrm{OH}}^{\mathrm{i}} a_{\mathrm{OH}}+k_{0} \tag{6}
\end{align*}
$$

where f_{B} and Q_{t} are previously identified symbols (vide supra). The rate constant $k^{i}{ }_{\wedge}$ (Table II) was obtained by dividing the slopes of plots of $k_{\text {obsd }}$ vs. [Q_{t}] at constant buffer ratio by f_{B}. The rate law of eq 6 also holds for isomerization of PGA_{2} to PGB_{2} catalyzed by triethylamine (TEA) and quinuclidinol (Qol) monitored at 280 nm . For the TEA-catalyzed reaction the deuterium solvent KIE, $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$, is 1.1. Isomerization of PGA_{2} to PGB_{2} followed at 280 nm and catalyzed by higher concentrations of Q than were used to monitor the same reaction at 224 nm obeyed the rate law

$$
\begin{align*}
\mathrm{d}\left[\mathrm{PGB}_{2}\right] / \mathrm{d} t\left[\mathrm{PGA}_{2_{1}}\right] & =k^{\text {cor }}{ }_{\text {obsd }} \\
& =k^{\mathrm{i}} \hat{f}_{\mathrm{B}}\left[\mathrm{Q}_{\mathrm{t}}\right] /\left(K f_{\mathrm{B}}\left[\mathrm{Q}_{\mathrm{t}}\right]\left[\mathrm{H}^{+}\right]+1\right) \tag{7}
\end{align*}
$$

where $\left[\mathrm{PGA}_{2_{1}}\right]=\left[\mathrm{PGA}_{2}\right]+\left[\mathrm{PGA}_{2}\right.$-Q adduct $]$ (Experimental Section $), k^{\text {cor }}{ }_{\text {obsd }}=k_{\text {obsd }}-\left(k^{\mathrm{O}} \mathrm{OH} a_{\mathrm{OH}}+k_{0}\right), f_{\mathrm{B}}$ and Q_{t} are as previously defined (vide supra), and $K=\left[\mathrm{PGA}_{2}\right.$-Q adduct]/ $\left[\mathrm{PGA}_{2}\right]\left[\mathrm{Q}_{\mathrm{i}} \mathrm{l}_{\mathrm{B}}\left[\mathrm{H}^{+}\right]\right.$. The constants $k_{\mathrm{A}}^{\mathrm{i}}$ (Table II) and K were evaluated by plotting $1 / k^{\text {cor }}$ obsd vs. $1 /\left[\mathrm{Q}_{2}\right]$, which gave $k^{\mathrm{i}} \mathrm{A}=$ $1 /\left(\right.$ slope $\left.\times f_{\mathrm{B}}\right)$ and $K=k^{\mathrm{A}}$ (intercept) $/\left[\mathrm{H}^{+}\right]$. The values of K at pH 11.24 and 11.57 are 5.9×10^{12} and $4.6 \times 10^{12} \mathrm{M}^{2}$, respectively. Equation 7 reduces to eq 6 when very low concentrations of Q , such as were used in the isomerization of PGA_{2} to PGB_{2} followed at 224 nm , are used.

Discussion

Dehydration of PGE $_{2}$. Hydroxide ion catalyzed dehydration of PGE_{2} to PGA_{2} is the fastest detectable reaction on the path to PGB_{2} (eq 1). The reactivity of PGE_{2} is virtually identical with that of 9-hydroxy-10-methyl-cis-decalone-2, ${ }^{36}$ also a cyclic β-ketol, that has been shown to undergo dehydration to 10 -methyl- $\Delta^{1.9}$-octalone- 2 via the enolate anion formed by deprotonation of C-1. Following this work of Spencer et al., ${ }^{36}$ we anticipated at the beginning of our work that analogous kinetics evidence for the formation of the PGE_{2} enolate anion in aqueous amine solutions could be obtained. However, the high absorbance of amine solutions at the analytical wavelength and the tendency of amines to add in Michael fashion to $\mathrm{C}-11$ of the dehydration product PGA_{2} prevented the attainment of this goal. Nevertheless, general base catalysis of dehydration by quinuclidine buffered with phosphate was established and this result is consistent with rate-determining enolate anion formation at low amine concentrations or a concerted dehydration reaction. In the light of Spencer's work and structure analogy, we favor the E1cB mechanism with enolate anion formation rate determining. We offer the opinion that even with low $\mathrm{p} K_{\mathrm{a}}$ amines that favor partitioning of the enolate anion to PGE_{2} the experimental problems will frustrate attempts to kinetically detect that intermediate.

Acid-catalyzed dehydration of PGE_{2} to PGA_{2} probably occurs via the enolization mechanism established by Noyce and Reed ${ }^{37}$ for dehydration of the β-ketol 4 -phenyl-4-hy-droxy-2-butanone to 4 -phenyl-2-butenone and supported by results of Bell et al., ${ }^{38}$ who studied the kinetics of hydration of mesityl oxide and crotonaldehyde. Three results obtained from the present study, in addition to structure analogy, support this view. The first is that the values of the rate constants for acid-catalyzed dehydration of $\mathrm{PGE}_{2}, 9$-hydroxy-10-methyl-cis-decalone-2, ${ }^{36}$ and 4-phenyl-4-hydroxy-2-butanone ${ }^{37}$ and for enolization of acetone ${ }^{39}$ are virtually the same, a result that seems unlikely to be fortuitous, so that acid-catalyzed dehydration of PGE_{2} probably proceeds via rapid equilibrium protonation of C-9 oxygen followed by rate-determining proton transfer from C-10 to give the enol-allyl alcohol shown. An

Schelne I

easy pathway from this intermediate to PGA_{2} could be via the fast-formed C-11 protonated allylic alcohol that could decompose to stabilized carbonium ion-C-9 oxygen-protonated PGA_{2}. With regard to this latter speculation, Stiles and Longroy ${ }^{40.41}$ showed that acid-catalyzed hydrolysis of 3 -ethoxy-2-cyclohexenol to cyclohexenone is a rapid process ($k_{\mathrm{H}}=3.3$ $\times 10^{5} \mathrm{M}^{-1} \mathrm{~min}^{-1}$). In a related study we ${ }^{42}$ examined the reaction of 3-methoxy-2-butenol in dilute acid solution to give butenone, also a facile reaction with $k_{I I}=10^{4} \mathrm{M}^{-1} \mathrm{~min}^{-1}$. Both reactions are specific acid catalyzed, although the reactants are vinyl ethers, and most likely occur via protonation of the allyl alcohol group followed by rate-determining carbonium ion formation-rearrangement, hydration, and decomposition of the hemiacetal. Without speaking to the reliability of log k vs. $-H_{0}$ plots as a criterion of mechanism, ${ }^{43}$ we note as a second result in favor of the enolization mechanism that a plot (not shown) of $\log k_{\text {obsd }}$ vs. $-H_{0}$ (maximum concentration of HCl 3 M) for dehydration of PGE_{2} is curved and shows that $\log k_{\text {obsd }}$ increases less rapidly than $-H_{0}$ as was observed for analogous reactions proceeding via the enolization mechanism. ${ }^{37,38}$ Lastly, the deuterium solvent KIE, $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$, is 0.62 and this compares favorably with the values $0.54,{ }^{44} 0.48,{ }^{45}$ and 0.6^{46} obtained for the enolization of acetone.

Isomerization of $\mathbf{P G A}_{\mathbf{2}}$ to $\mathbf{P G B}_{2} . \mathrm{PGA}_{2}$ is relatively stable in dilute acid solution ${ }^{47}$ but it readily undergoes isomerization in dilute hydroxide ion solutions ${ }^{6 \cdot 13}$ (eq 1) to give PGB_{2}. Isomerization appears to be driven toward PGB_{2} by the presumed greater stability of this conjugated and highly substituted dienone. ${ }^{48}$ No evidence for the existence of PGC_{2} (eq 1) on the path from PGE_{2} to PGB_{2} was obtained in this study. However, on chemical grounds it is sensible to propose its formation and isomerization. Its chemical instability was noted by Corey et al., ${ }^{49}$ who synthesized it from PGA_{2} only under very carefully controlled isomerization conditions. Jones ${ }^{33}$ succeeded in isolating and characterizing PGC_{1} as the product from enzyme-catalyzed isomerization of PGA_{1}. An indication of the instability of PGC_{1} in solution is provided by his report that its reactivity at pH 7 is comparable to that of PGA_{1} at pH 11.5-12. From these data and $k^{\mathrm{i}} \mathrm{OH}$ (Table II) for isomerization of PGA_{2} it can be estimated that $k^{\mathrm{i}} \mathrm{OH}$ for isomerization of PGC_{2} is $10^{4}-10^{5} \mathrm{M}^{-1} \mathrm{~min}^{-1}$. Our inability to detect PGC_{2} spectroscopically is consistent with its estimated reactivity and with the result that the rate constant $k^{\mathrm{i}} \mathrm{OH}$ for loss of PGA_{2} (224 nm) is equal to that for formation of $\mathrm{PGB}_{2}(280 \mathrm{~nm})$ within experimental error (Table II). Thus isomerization of PGA_{2} to PGC_{2} is rate determining in the sequence $\mathrm{PGA}_{2} \rightarrow$ $\mathrm{PGC}_{2} \rightarrow \mathrm{PGB}_{2}$ (eq 1).

Conversion of PGA_{2} to PGC_{2} involves removal of the $\mathrm{C}-12$ proton and transfer of a proton to $\mathrm{C}-10$ of the dienolate anion, Scheme I. These reactions should be general base general acid catalyzed, ${ }^{50-53}$ although the kinetics of the isomerization are uninformative respecting the nature of the rate-determining step of Scheme I. The mechanism of Scheme I gives the steady-state rate law

$$
\begin{align*}
& -\mathrm{d}\left[\mathrm{PGA}_{2}\right] / \mathrm{d} t\left[\mathrm{PGA}_{2}\right]=k_{\text {obyd }} \\
& \quad=k_{1} k_{2}\left(1+1 / K_{\mathrm{ei}}\right)[\mathrm{B}] /\left(k_{-1}+k_{2}\right) \tag{8}
\end{align*}
$$

where $K_{\mathrm{ei}}=k_{1} k_{2} / k_{-1} k_{-2}$, and regardless of which step, if either, is rate determining in Scheme I the rate of isomerization appears to be general base catalyzed. However, we ${ }^{54}$ have found deuterium solvent KIEs of 6-8 for related amine-cata-
 steroids and others ${ }^{50-52}$ have obtained similar results for related systems, all of which involve isomerization of β, γ-unsaturated carbonyls to α, β-unsaturated carbonyls. This result has been interpreted to mean that in such isomerizations k_{-1} (Scheme 1) is rate determining, which requires that k_{1} be rate determining in the reverse isomerization of the conjugated ketone to the unconjugated ketone (Scheme I). This conclusion is not firm in those cases where conjugated-unconjugated isomers are approaching equilibrium, however, since the measured general base rate constant is a composite constant that contains all the rate constants of Scheme I and regardless of what step is rate determining a deuterium solvent KIE is expected. For isomerization of PGA_{2} to PGC_{2}, a reaction we view as unidirectional (Scheme $1, k_{-2}=0$), it is expected that partitioning of the dienolate anion toward PGC_{2} will be favorable ${ }^{50.55}$ and that general-base-catalyzed $\mathrm{C}-12$ proton transfer from PGA_{2} will be rate determining. In fact isomerization of PGA_{2} to PGC_{2} is general base catalyzed by quinuclidine, quinuclidinol, and triethylamine. This result coupled with the negligible deuterium solvent KIE, 11.1, for isomerization of PGA_{2} catalyzed by triethylamine and the essentially identical rate constants for the quinuclidine-catalyzed isomerization of PGA_{2} (224 nm) and formation of PGB_{2} (280 nm) supports the mechanism of Scheme I, k_{1} rate determining, in the overall isomerization of PGA_{2} to PGB_{2}.

Sunmmarized, our results show that dehydration of PGE_{2} to PGA_{2} is general base catalyzed, that acid- and base-catalyzed dehydrations of PGE_{2} are probably typical enolization reactions, that general-base-catalyzed isomerization of PGA_{2} to PGC_{2} is rate determining in the reaction sequence $\mathrm{PGE}_{2} \rightarrow$ $\mathrm{PGA}_{2} \rightarrow \mathrm{PGC}_{2} \rightarrow \mathrm{PGB}_{2}$ (eq 1), and that for this sequence of reactions $\mathrm{C}-12$ proton abstraction from PGA_{2} is probably rate determining.

Acknowledgment. We wish to express our gratitude to Drs. M. J. Cho and J. E. Pike of the Upjohn Co. for graciously arranging to have a sample of PGE_{2} sent to us.

References and Notes

(1) Barden, T. P. "The Prostaglandins', Vol. 3; Ramwell, P. W., Ed.; Plenum Press: New York, 1977; Chapter 4.
(2) Karin, S. M. M., Ed. 'Advances in Prostaglandin Research: Prostaglandins and Reproduction'; University Park Press: Baltimore, 1975.
(3) Brenner, P. F.; Ballard, C.; Mishell, Jr., D. R. Prostaglandins 1977, 14, 771.
(4) Elder, M. G.; Stone, M. Prostaglandins 1974, 6, 427.
(5) Pharriss, B. Ann. N. Y. Acad. Sci. 1971, 180, 436.
(6) Daniels, E. C.; Krueger, W. C.; Kupiecki, F. P.; Pike, J. E.; Schneider, W. P. J. Am. Chem. Soc. 1968, 90. 5894.
(7) Merritt. M. V.; Bronson, G. E. J. Am. Chem. Soc. 1978, 100, 1891.
(8) Spraggins, R. L. Tetrahedron Lett. 1972, 4343.
(9) Stehle, R. G.; Oesterling, T. O. J. Pharm. Sci. 1977, 66, 1590.
(10) Monkhouse, D. C.; Van Campen, L.; Aguiar, A. J. J. Pharm. Sci. 1973, 62, 576.
(11) Thompson, C. F.; Collins, J. M.; Schmalzried, L. M. J. Pharm. Sci. 1973, 62, 1738
(12) Karin, S. M. M.; Devlin, J.; Hillier, K. Eur. J. Pharmacol. 1968, 4, 416.
(13) Anderson, N. H.; J. Lipid Res. 1969, 10, 320.
(14) Cho, M. J.; Bundy, G. L.; Biermacher, J. J. J. Med. Chem. 1977, 20, 1525.
(15) Cho, M. J.; Krueger, W. C.; Oesterling, T. O. J. Pharm. Sci. 1977, 66, 149.
(16) Yalkowsky. S. H.; Roseman. J. Pharm. Sci. 1979, 68, 4214.
(17) Stehle, R. G.; Smith, R. W. J. Pharm. Sci. 1976, 65, 1844.
(18) Cammock, S. Adv. Biosci. Suppl. 1972, 9, 10.
(19) Russell, P. T.: Alan, N.; Clary, P. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1973, 32, 804.
(20) Polet, H.; Levine, L. J. Biol. Chem. 1975, 250, 351
(21) Jones, R. L. Biochem. J. 1970, 119, 64P
(22) Jones, R. L., Cammock, S. Adv. Biosci. 1973, 9, 61.
(23) Polet, H.; Levine, L. Biochem. Blophys. Res. Commun. 1971, 45, 1169.
(24) Leslie, C. A.; Levine, L. Biochem. Biophys. Res. Commun. 1973, 52, 717.
(25) Lee, S. C.; Levine, L. J. Biol. Chem. 1975, 250, 4549.
(26) Anggard, E.: Samuelsson, B. Ark. Kemi 1966, 25, 293
(27) Braithwaite, S. S.; Jarabok, J. J. Biol. Chem. 1975, 250, 2315
(28) Anggard, E.; Samuelsson, B. J. Biol. Chem. 1964, 239, 4097.
(29) Lee, S. C.; Levine, L. Blochem. Biophys. Res. Commun. 1974, 61. 14.
(30) Fife, T. H.: Bruice, T. C. J. Phys. Chem. 1961, 65, 1079.
(31) Robinson, R. A.; Stokes, R. H. "Electrolyte Solutions'", 2nd ed.; Butterworth: London, 1959.
(32) "Handbook of Chemistry and Physics", 52nd ed.; Weast, R C., Ed.; Chemical Rubber Publishing Co.: Cleveland, 1971; pD-122.
(33) Jones, R. L. J. Lipid Res. 1972, 13, 511.
(34) Frost, A. A.; Pearson. R. G. 'Kinetics and Mechanism"', 2nd ed.; Wiley: New York, 1961; Chapter 8.
(35) Stork, G.; Raucher, S. J. Am. Chem. Soc. 1976, 98, 1583.
(36) Hupe, D. J.; Kendall, M. C. R.; Sinner, G. T.; Spencer, T. A. J. Am. Chem. Soc. 1973, 95, 2260.
(37) Noyce, D. S.; Reed, W. L. J. Am. Chem. Soc. 1958, 80, 5539.
(38) Bell, R. P.; Preston, J.; Whitney, R. B. J. Chem. Soc. 1962, 1166.
(39) Bell, R. P.; Jones, P. J. Chem. Soc. 1953, 88.
(40) Stiles, M.; Longroy, A. L. J. Org. Chem. 1967, 32, 1095.
(41) Stiles, M.; Longroy, A. L., Tetrahedron Lett. 1961, No. 10, 337.
(42) Fedor, L. R., unpublished results.
(43) Rochester, C. H. 'Acidity Functions"; Academic Press: New York, 1970.
(44) Toullec, J.; Dubois, J. E. J. Am. Chem. Soc. 1974, 96, 3524
(45) Reitz, O.; Kepp, J. Z. Phys. Chem., Abt. A 1939, 184, 429.
(46) McTigue, P. T.; Sime, J. M. Aust. J. Chem. 1967, 20, 905.
(47) $\operatorname{In} 5 \mathrm{M} \mathrm{HCl}$ the reaction is complex and is spectroscopically characterized by an OD_{230} increase followed by a decrease as OD_{270} increases which then decreases as $O D_{335}$ increases. The peaks at 230 and 270 nm could represent mixtures of $\mathrm{P}_{6} / \mathrm{PGC}_{2}$ and $\mathrm{PGC}_{2} / \mathrm{PGB}_{2}$, respectively. The $330-\mathrm{nm}$ peak could be the $\mathrm{C}-15-\mathrm{C}-16$ anhydro- PGB_{2}. ${ }^{9}$
(48) Hine, J. "'Structural Effects on Equilibria in Organic Chemistry"; Wiley: New York, 1975; Chapter 8.
(49) Corey, E. J.; Cyr, C. R. Tetrahedron Lett. 1974, 1761.
(50) Whalen, D. L.; Weimaster, J. F.; Ross, A. M.; Radhe, R. J. Am. Chem. Soc. 1976, 98, 7319.
(51) Sakai, M.; Nishikawa, S.; Koike, H.; Sakakibara, Y.; Uchino, N. Bull. Chem. Soc. Jpn. 1978, 51. 2970.
(52) Fedor, L. R.; Gray, P. H. J. Am. Chem. Soc. 1976, 98, 783
(53) Jones, J. B.; Wigfield, D. Can. J. Chem. 1969, 47, 4459.
(54) Perera, S. K.; Fedor, L. R., unpublished results.
(55) Malhotra, S. K.; Ringold, H. J. J. Am. Chem. Soc. 1963, 85, 1538.
(56) Bell, R. P. '"The Proton in Chemistry', 2nd ed.; Cornell University Press: Ithaca, N.Y., 1973; Chapter 11.
(57) The $\log k_{\text {obsd }}-\mathrm{pH}$ profile ${ }^{11}$ for dehydration of PGE_{2} and the greater reactivity at pH 6 of PGE_{2} than PGE_{2} carbamoyl methyl ester ${ }^{17}$ support intranolecular carboxylate group participation in dehydration of PGE $_{2}$. Under the conditions of this study we were unable to detect such participation; intercepts of plots of $k_{\text {obsd }}$ vs. $\left[\mathrm{Q}_{\mathrm{t}}\right]$ were accounted for by the calculated $\kappa^{\mathrm{d}} \mathrm{OH}^{2} \mathrm{aOH}_{\mathrm{OH}}$ values. However, carboxylate group catalysis as reported ${ }^{11}$ would contribute only ca. $0.005-0.2 \%$ to the value of the calculated intercepts (eq 4) and our analytical method is not sufficiently sensitive to measure that contribution.
(58) The value of $k_{0}(\mathrm{eq} 6)$ for isomerization of PGA_{2} in aqueous amine solutions contributes $\mathrm{ca} .20-40 \%$ of the intercept values of plots of $k_{\text {obsd }}$ vs. concentration of amine (eq 6) and this could be due in part to intramolecular carboxylate group catalysis. A case, albeit a weak one, based on the reported ${ }^{10} \log k_{\text {obsd }}-\mathrm{pH}$ profile for PGA_{2} isomerization could be made for such catalysis. If k_{0} does represent some contribution to the reactivity of PGA_{2} via carboxylate group participation, the question arises, why should k_{0} for isomerization of PGA_{2} be greater than $k^{\mathrm{d}} \mathrm{COO}^{-}$for dehydration of PGE ${ }^{2}$? The data of Tables I and II for hydroxide ion catalysis suggest that the converse should be true, although different Bronsted β 's could account for this. Also, comparison of $\log k_{\text {obs }}$ pH profiles for isomerization of PGA and dehydration of PGE_{2} at $\mathrm{pH} \mathrm{ca} .6^{10}$ shows that dehydration proceeds faster than isomerization. In the light of the uncertain values of k_{0} and its breakdown, the absence of sufficient low pH rate data, and the unknown preferred conformations of prostaglandins in aqueous solution, ${ }^{10.59} \mathrm{we}$ defer further comment on this point at this time.
(59) Leovey, E. M. K.; Andersen, N. H. J. Am. Chem. Soc. 1975, 97. 4148.

